
584 Chapter 9 Infinite Series

9.1 Sequences

List the terms of a sequence.
Determine whether a sequence converges or diverges.
Write a formula for the th term of a sequence.
Use properties of monotonic sequences and bounded sequences.

Sequences
In mathematics, the word “sequence” is used in much the same way as it is in ordinary
English. Saying that a collection of objects or events is in sequence usually means that
the collection is ordered in such a way that it has an identified first member, second
member, third member, and so on.

Mathematically, a sequence is defined as a function whose domain is the set of
positive integers. Although a sequence is a function, it is common to represent
sequences by subscript notation rather than by the standard function notation. For
instance, in the sequence

1, 2, 3, 4,

Sequence

1 is mapped onto 2 is mapped onto and so on. The numbers

are the terms of the sequence. The number is the th term of the sequence, and the
entire sequence is denoted by Occasionally, it is convenient to begin a sequence
with so that the terms of the sequence become and the
domain is the set of nonnegative integers.

Listing the Terms of a Sequence

a. The terms of the sequence are

2, 4, 2, 4,

b. The terms of the sequence are

c. The terms of the sequence are

d. The terms of the recursively defined sequence where and 
are

.  .  . .15 � 5 � 10,20 � 5 � 15,25 � 5 � 20,25,

dn�1 � dn� 5,d1 � 25�dn�,

.  .  . .
16
15

,
9
7

,
4
3

,
1
1

,

.  .  .
42

24 � 1
,

32

23 � 1
,

22

22 � 1
,

12

21 � 1
,

�cn� � � n2

2n � 1�
.  .  . .�

4
7

,�
3
5

,�
2
3

,�1,

.  .  . 
4

1 � 2 � 4
,

3
1 � 2 � 3

,
2

1 � 2 � 2
,

1
1 � 2 � 1

,

�bn� � � n
1 � 2n�

.  .  . .

.  .  . 3 � ��1�4,3 � ��1�3,3 � ��1�2,3 � ��1�1,

�an� � �3 � ��1�n�

a0, a1, a2, a3,  .  .  . , an, .  .  . a0,
�an�.

nan

.  .  .a1, a2, a3, .  .  . , an,

a2,a1,

.  .  .an,.  .  . ,a4,a3,a2,a1,

.  .  .n,.  .  . ,

n

Exploration

Finding Patterns Describe
a pattern for each of the
sequences listed below. Then
use your description to write
a formula for the th term of
each sequence. As increases,
do the terms appear to be
approaching a limit? Explain
your reasoning.

a.

b.

c.

d.

e. 3
7, 5

10, 7
13, 9

16, 11
19, .  .  .

1
4, 49, 9

16, 16
25, 25

36, .  .  .

10, 10
3 , 10

6 , 10
10, 10

15, .  .  .

1, 12, 16, 1
24, 1

120, .  .  .

1, 12, 14, 18, 1
16, .  .  .

n
n

REMARK Some sequences
are defined recursively. To
define a sequence recursively,
you need to be given one or
more of the first few terms. All
other terms of the sequence are
then defined using previous
terms, as shown in Example 1(d).
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Limit of a Sequence
The primary focus of this chapter concerns sequences whose terms approach limiting
values. Such sequences are said to converge. For instance, the sequence 

converges to 0, as indicated in the next definition.

Graphically, this definition says that eventually (for and ), the terms
of a sequence that converges to will lie within the band between the lines 
and as shown in Figure 9.1.

If a sequence agrees with a function at every positive integer, and if 
approaches a limit as then the sequence must converge to the same limit 

Finding the Limit of a Sequence

Find the limit of the sequence whose term is 

Solution In Theorem 5.15, you learned that

So, you can apply Theorem 9.1 to conclude that

There are different ways in which a sequence can fail to have a limit. One way is
that the terms of the sequence increase without bound or decrease without bound. These
cases are written symbolically, as shown below.

Terms increase without bound:

Terms decrease without bound: lim
n→�

  an � ��

lim
n→�

  an � �

lim
n→�

 an � lim
n→�

 �1 �
1
n	

n

� e.

lim
x→�

 �1 �
1
x	

x

� e.

an � �1 �
1
n	

n

.nth

L.x →�,L
f �x�f�an�

y � L � �,
y � L � �L

� > 0n > M

1
2

,  
1
4

,  
1
8

,  
1
16

,  
1
32

, .  .  .

�1
2n�
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Definition of the Limit of a Sequence

Let be a real number. The limit of a sequence is written as

if for each there exists such that whenever 
If the limit of a sequence exists, then the sequence converges to If the limit 
of a sequence does not exist, then the sequence diverges.

L.L
n > M.�an � L� < �M > 0� > 0,

lim
n→�

  an � L

L,�an�L

THEOREM 9.1 Limit of a Sequence

Let be a real number. Let be a function of a real variable such that

If is a sequence such that for every positive integer then

lim
n→�

  an � L.

n,f �n� � an�an�

lim
x→�

 f �x� � L.

fLREMARK The converse of
Theorem 9.1 is not true (see
Exercise 84). 

n
642 31 5

ε

ε
L

M

L + 

L − 

y = an

For , the terms of the sequence
all lie within units of 
Figure 9.1

L.�
n > M
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The properties of limits of sequences listed in the next theorem parallel those given
for limits of functions of a real variable in Section 1.3.

Determining Convergence or Divergence

See LarsonCalculus.com for an interactive version of this type of example.

a. Because the sequence has terms

See Example 1(a), page 584.

that alternate between 2 and 4, the limit

does not exist. So, the sequence diverges.

b. For divide the numerator and denominator by to obtain

See Example 1(b), page 584.

which implies that the sequence converges to 

Using L’Hôpital’s Rule to Determine Convergence

Show that the sequence whose term is converges.

Solution Consider the function of a real variable

Applying L’Hôpital’s Rule twice produces

Because for every positive integer, you can apply Theorem 9.1 to conclude
that

See Example 1(c), page 584.

So, the sequence converges to 0.

lim
n→�

 
n2

2n � 1
� 0.

f �n� � an

lim
x→�

 
x2

2x � 1
� lim

x→�
 

2x
�ln 2�2x � lim

x→�
 

2
�ln 2�22x � 0.

f �x� �
x2

2x � 1
.

an �
n2

2n � 1
nth

�
1
2.

lim
n→�

 
n

1 � 2n
� lim

n→�
 

1
�1
n� � 2

� �
1
2

n�bn� � � n
1 � 2n� ,

lim
n→�

 an

2, 4, 2, 4, .  .  .

�an� � �3 � ��1�n�
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THEOREM 9.2 Properties of Limits of Sequences

Let and 

1.

2. is any real number.

3.

4. and K � 0bn � 0lim
n→�

 
an

bn

�
L
K

,

lim
n→�

 �anbn� � LK

clim
n→�

 can � cL,

lim
n→�

 �an ± bn� � L ± K

lim
n→�

 bn � K.lim
n→�

 an � L

TECHNOLOGY Use a
graphing utility to graph the
function in Example 4. Notice
that as approaches infinity,
the value of the function gets
closer and closer to 0. If you
have access to a graphing utility
that can generate terms of 
a sequence, try using it to 
calculate the first 20 terms of
the sequence in Example 4.
Then view the terms to observe
numerically that the sequence
converges to 0.

x
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The symbol (read “ factorial”) is used to simplify some of the formulas
developed in this chapter. Let be a positive integer; then factorial is defined as

As a special case, zero factorial is defined as From this definition, you can see
that and so on. Factorials follow the same
conventions for order of operations as exponents. That is, just as and imply
different orders of operations, and imply the orders

and

respectively.
Another useful limit theorem that can be rewritten for sequences is the Squeeze

Theorem from Section 1.3.

Using the Squeeze Theorem

Show that the sequence converges, and find its limit.

Solution To apply the Squeeze Theorem, you must find two convergent sequences
that can be related to Two possibilities are and both of
which converge to 0. By comparing the term with you can see that

factors

and

factors

This implies that for and you have

as shown in Figure 9.2. So, by the Squeeze Theorem, it follows that 

Example 5 suggests something about the rate at which increases as As
Figure 9.2 suggests, both and approach 0 as Yet approaches 0 so
much faster than does that

In fact, it can be shown that for any fixed number This means that 

the factorial function grows faster than any exponential function.

lim
n→�

 �kn
n!� � 0.k,

lim
n→�

  
1
n!
1
2n � lim

n→�
 
2n

n!
� 0.

1
2n
1
n!n →�.1
n!1
2n

n →�.n!

lim
n→�

  ��1�n 
1
n!

� 0.

n 	 4
�1
2n 
 ��1�n 

1
n!



1
2n ,

n 	 4, 2n < n!,

n � 4

�n 	 4�2n � 2 � 2 � 2 � 2 � 2 � 2 .  .  . 2 � 16 � 2 � 2 .  .  . 2.

n � 4

�n 	 4�n! � 1 � 2 � 3 � 4 � 5 � 6 .  .  . n � 24 � 5 � 6 .  .  . n

2n,n!
bn � 1
2n,an � �1
2n�cn�.

�cn� � ���1�n 
1
n!�

�2n�! � 1 � 2 � 3 � 4 .  .  . n � �n � 1� .  .  . 2n

2n! � 2�n!� � 2�1 � 2 � 3 � 4 .  .  . n�

�2n�!2n!
�2x�32x3

3! � 1 � 2 � 3 � 6,2! � 1 � 2 � 2,1! � 1,
0! � 1.

n! � 1 � 2 � 3 � 4 .  .  . �n � 1� � n.

nn
nn!
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THEOREM 9.3 Squeeze Theorem for Sequences

If and there exists an integer such that 

for all then lim
n→�

  cn � L.n > N,

an 
 cn 
 bnNlim
n→�

 an � L � lim
n→�

 bn

n
1

0.5

1.0

−1.5

−1.0

−0.5
1
2n

(−1)n

n!

−

1
2n

an

For is squeezed
between and 
Figure 9.2

1
2n.�1
2n

��1�n
n!n 	 4,
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In Example 5, the sequence has both positive and negative terms. For this
sequence, it happens that the sequence of absolute values, also converges to 0.
You can show this by the Squeeze Theorem using the inequality

In such cases, it is often convenient to consider the sequence of absolute values—and
then apply Theorem 9.4, which states that if the absolute value sequence converges to
0, then the original signed sequence also converges to 0.

Proof Consider the two sequences and Because both of these
sequences converge to 0 and

you can use the Squeeze Theorem to conclude that converges to 0.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Pattern Recognition for Sequences
Sometimes the terms of a sequence are generated by some rule that does not
explicitly identify the term of the sequence. In such cases, you may be required to
discover a pattern in the sequence and to describe the term. Once the term has
been specified, you can investigate the convergence or divergence of the sequence.

Finding the nth Term of a Sequence

Find a sequence whose first five terms are

and then determine whether the sequence you have chosen converges or diverges.

Solution First, note that the numerators are successive powers of 2, and the 
denominators form the sequence of positive odd integers. By comparing with you
have the following pattern.

Consider the function of a real variable Applying L’Hôpital’s Rule
produces

Next, apply Theorem 9.1 to conclude that

So, the sequence diverges.

lim
n→�

  
2n

2n � 1
� �.

lim
x→�

  
2x

2x � 1
� lim

x→�
 
2x�ln 2�

2
� �.

f �x� � 2x
�2x � 1�.

21

1
,  

22

3
,  

23

5
,  

24

7
,  

25

9
, .  .  . , 

2n

2n � 1
, .  .  .

n,an

2
1

,  
4
3

,  
8
5

,  
16
7

,  
32
9

, .  .  .

�an�

nthnth
nth

�an�

��an� 
 an 
 �an�

���an��.��an��

n 	 4.0 

1
n!



1
2n ,

��cn��,
�cn�
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THEOREM 9.4 Absolute Value Theorem

For the sequence if

then lim
n→�

 an � 0.lim
n→�

  �an� � 0

�an�,
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Without a specific rule for generating the terms of a sequence or some knowledge
of the context in which the terms of the sequence are obtained, it is not possible to 
determine the convergence or divergence of the sequence merely from its first several
terms. For instance, although the first three terms of the following four sequences are
identical, the first two sequences converge to 0, the third sequence converges to and
the fourth sequence diverges.

The process of determining an term from the pattern observed in the first several
terms of a sequence is an example of inductive reasoning.

Finding the nth Term of a Sequence

Determine the term for a sequence whose first five terms are

and then decide whether the sequence converges or diverges.

Solution Note that the numerators are 1 less than 

So, you can reason that the numerators are given by the rule

Factoring the denominators produces

and

This suggests that the denominators are represented by Finally, because the signs
alternate, you can write the term as

From the discussion about the growth of it follows that

Applying Theorem 9.4, you can conclude that

So, the sequence converges to 0.�an�

lim
n→�

  an � 0.

lim
n→�

 �an� � lim
n→�

 
3n � 1

n!
� 0.

n!,

an � ��1�n�3n � 1
n! 	.

nth
n!.

 120 � 1 � 2 � 3 � 4 � 5.

 24 � 1 � 2 � 3 � 4

 6 � 1 � 2 � 3

 2 � 1 � 2

 1 � 1

3n � 1.

35 � 1 � 24234 � 1 � 8033 � 1 � 2632 � 1 � 831 � 1 � 2

3n.

�
2
1

,  
8
2

, �
26
6

,  
80
24

, �
242
120

, .  .  .

nth

nth

�dn� :  
1
2

,  
1
4

,  
1
8

,  0, .  .  . ,  
�n�n � 1��n � 4�

6�n2 � 3n � 2� , .  .  .

�cn� :  
1
2

,  
1
4

,  
1
8

,  
7
62

, .  .  . ,  
n2 � 3n � 3

9n2 � 25n � 18
, .  .  .

�bn� :  
1
2

,  
1
4

,  
1
8

,  
1
15

, .  .  . ,  
6

�n � 1��n2 � n � 6� , .  .  .

�an� :  
1
2

,  
1
4

,  
1
8

,  
1
16

, .  .  . ,  
1
2n , .  .  .

1
9,
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Monotonic Sequences and Bounded Sequences
So far, you have determined the convergence of a sequence by finding its limit. Even
when you cannot determine the limit of a particular sequence, it still may be useful to
know whether the sequence converges. Theorem 9.5 (on the next page) provides a test
for convergence of sequences without determining the limit. First, some preliminary 
definitions are given.

Determining Whether a Sequence Is Monotonic

Determine whether each sequence having the given term is monotonic.

a.

b.

c.

Solution

a. This sequence alternates between 2 and 4. So, it is not monotonic.

b. This sequence is monotonic because each successive term is greater than its 
predecessor. To see this, compare the terms and [Note that, because is
positive, you can multiply each side of the inequality by and 
without reversing the inequality sign.]

Starting with the final inequality, which is valid, you can reverse the steps to
conclude that the original inequality is also valid.

c. This sequence is not monotonic, because the second term is greater than the first term,
and greater than the third. (Note that when you drop the first term, the remaining
sequence is monotonic.)

Figure 9.3 graphically illustrates these three sequences.

In Example 8(b), another way to see that the sequence is monotonic is to argue that
the derivative of the corresponding differentiable function

is positive for all This implies that is increasing, which in turn implies that is
increasing.

�bn�fx.

 f�x� �
2x

1 � x

c2, c3, c4, .  .  .

 0 < 2

 4n � 2n2 <
?

2 � 4n � 2n2

 2n�2 � n� <
? �1 � n��2n � 2�

 bn �
2n

1 � n
<
? 2�n � 1�

1 � �n � 1� � bn�1

�2 � n��1 � n�
nbn�1.bn

cn �
n2

2n � 1

bn �
2n

1 � n

an � 3 � ��1�n

nth
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Definition of Monotonic Sequence

A sequence is monotonic when its terms are nondecreasing

or when its terms are nonincreasing

a1 	 a2 	 a3 	 .  .  . 	 an 	 .  .  . .

a1 
 a2 
 a3 
 .  .  . 
 an 
 .  .  .

�an�

n
1

1

2

2

3

3

4

4

a1

a2

a3

a4

{an} = {3 + (−1)n}

an

(a) Not monotonic

n
1

1

2

2

3

3

4

4

b1

b2
b3

b4

{bn} = { }2n
1 + n

bn

(b) Monotonic

n
1

1

2

2

3

3

4

4

c1

c2 c3 c4

{cn} = n2

2n − 1{ }

cn

(c) Not monotonic

Figure 9.3
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Note that all three sequences in Example 3 (and shown in Figure 9.3) are bounded.
To see this, note that

and

One important property of the real numbers is that they are complete.
Informally, this means that there are no holes or gaps on the real number line. (The set
of rational numbers does not have the completeness property.) The completeness axiom
for real numbers can be used to conclude that if a sequence has an upper bound, then 
it must have a least upper bound (an upper bound that is less than all other 
upper bounds for the sequence). For example, the least upper bound of the sequence

is 1. The completeness axiom is used in the proof of Theorem 9.5.

Proof Assume that the sequence is nondecreasing, as shown in Figure 9.4. For the
sake of simplicity, also assume that each term in the sequence is positive. Because the
sequence is bounded, there must exist an upper bound such that

From the completeness axiom, it follows that there is a least upper bound such that

For it follows that and therefore cannot be an upper bound
for the sequence. Consequently, at least one term of is greater than That is,

for some positive integer Because the terms of are nondecreasing,
it follows that for You now know that 
for every It follows that for which by definition means that

converges to The proof for a nonincreasing sequence is similar (see Exercise 91).
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Bounded and Monotonic Sequences

a. The sequence is both bounded and monotonic, and so, by Theorem 9.5,
it must converge.

b. The divergent sequence is monotonic, but not bounded. (It is
bounded below.)

c. The divergent sequence is bounded, but not monotonic.�cn� � ���1�n�

�bn� � �n2
�n � 1��

�an� � �1
n�

L.�an�
n > N,�an � L� < �n > N.

L � � < aN 
 an 
 L < L � �,n > N.aN 
 an

�an�N.L � � < aN

L � �.�an�
L � �L � � < L,� > 0,

a1 
 a2 
 a3 
 .  .  . 
 an 
 .  .  . 
 L.

L

a1 
 a2 
 a3 
 .  .  . 
 an 
 .  .  . 
 M.

M

1
2

,  
2
3

,  
3
4

,  
4
5

, .  .  . , 
n

n � 1
, .  .  .

�an� � �n
�n � 1��,

0 
 cn 

4
3

.1 
 bn 
 2,2 
 an 
 4,
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Definition of Bounded Sequence

1. A sequence is bounded above when there is a real number such that
for all The number is called an upper bound of the sequence.

2. A sequence is bounded below when there is a real number such that
for all The number is called a lower bound of the sequence.

3. A sequence is bounded when it is bounded above and bounded below.�an�
Nn.N 
 an

N�an�
Mn.an 
 M

M�an�

THEOREM 9.5 Bounded Monotonic Sequences

If a sequence is bounded and monotonic, then it converges.�an�

n
1

1

2

2

3

3

4 5

4

a1

a2

a3

a4
a5

L

a1 ≤ a2 ≤ a3 ≤ ⋅⋅⋅ ≤ L

an

Every bounded, nondecreasing
sequence converges.
Figure 9.4
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592 Chapter 9 Infinite Series

9.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Listing the Terms of a Sequence In Exercises 1–6, write
the first five terms of the sequence.

1. 2.

3. 4.

5. 6.

Listing the Terms of a Sequence In Exercises 7 and 8,
write the first five terms of the recursively defined sequence.

7. 8.

Matching In Exercises 9–12, match the sequence with its
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

9. 10.

11. 12.

Writing Terms In Exercises 13–16, write the next two
apparent terms of the sequence. Describe the pattern you used
to find these terms.

13. 14.

15. 16.

Simplifying Factorials In Exercises 17–20, simplify the
ratio of factorials.

17. 18.

19. 20.

Finding the Limit of a Sequence In Exercises 21–24,
find the limit (if possible) of the sequence.

21. 22.

23. 24.

Finding the Limit of a Sequence In Exercises 25–28, use
a graphing utility to graph the first 10 terms of the sequence.
Use the graph to make an inference about the convergence or
divergence of the sequence. Verify your inference analytically
and, if the sequence converges, find its limit.

25. 26.

27. 28.

Determining Convergence or Divergence In Exercises
29– 44, determine the convergence or divergence of the
sequence with the given th term. If the sequence converges,
find its limit.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

Finding the nth Term of a Sequence In Exercises 45–52,
write an expression for the th term of the sequence. (There is
more than one correct answer.)

45. 46.

47. 48.

49.

50. 2, 24, 720, 40,320, 3,628,800, .  .  .

51.

52.
1

2 � 3
,  

2
3 � 4

,  
3

4 � 5
,  

4
5 � 6

, .  .  .

2, 1 �
1
2, 1 �

1
3, 1 �

1
4, 1 �

1
5, .  .  .

2
3, 34, 45, 56, .  .  .

1, �1
4, 19, � 1

16, .  .  .�2, 1, 6, 13, 22, .  .  .

1, 12, 16, 1
24, 1

120, .  .  .2, 8, 14, 20, .  .  .

n

an �
cos �n

n2an �
sin n

n

an � �3�nan � 21
n

an � n sin 
1
n

an �
n p

en , p > 0

an �
�n � 2�!

n!
an �

�n � 1�!
n!

an �
5n

3nan �
ln�n3�

2n

an �
3�n

3�n � 1
an �

10n2 � 3n � 7
2n2 � 6

an �
1 � ��1�n

n2an � ��1�n� n
n � 1	

an � 8 �
5
n

an �
5

n � 2

n

an � 2 �
1
4nan � sin 

n�

2

an �
1

n3
2an �
4n � 1

n

an � cos 
2
n

an �
2n

�n2 � 1

an � 6 �
2
n2an �

5n2

n2 � 2

�2n � 2�!
�2n�!

�2n � 1�!
�2n � 1�!

n!
�n � 2�!

�n � 1�!
n!

6, �2, 
2
3

, �
2
9

, .  .  .5, 10, 20, 40, .  .  .

8, 13, 18, 23, 28, .  .  .2, 5, 8, 11, .  .  .

an �
��1�n

n
an � ��1�n

an �
10n

n � 1
an �

10
n � 1

2 4 6 8 10
−1

−2

1

2

n

anan

2 4 6 8 10

2

4

6

8

10

n

−2 2 4 6 8 10

−0.8

−0.4
−0.6

−1.0

0.4
0.2

0.6

n

anan

2 4 6 8 10

2

4

6

8

10

n

a1 � 6, ak�1 �
1
3ak

2a1 � 3, ak�1 � 2�ak � 1�

an � 2 �
2
n

�
1
n2an � ��1�n�1�2

n	

an �
3n

n � 4
an � sin 

n�

2

an � ��
2
5	

n

an � 3n
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9.1 Sequences 593

Finding Monotonic and Bounded Sequences In
Exercises 53–60, determine whether the sequence with the
given th term is monotonic and whether it is bounded. Use a
graphing utility to confirm your results.

53. 54.

55. 56.

57. 58.

59. 60.

Using a Theorem In Exercises 61–64, (a) use Theorem 9.5
to show that the sequence with the given th term converges,
and (b) use a graphing utility to graph the first 10 terms of the
sequence and find its limit.

61. 62.

63. 64.

65. Increasing Sequence Let be an increasing
sequence such that Explain why has a limit.
What can you conclude about the limit?

66. Monotonic Sequence Let be a monotonic
sequence such that Discuss the convergence of 
When converges, what can you conclude about its limit?

68. Compound Interest A deposit of $100 is made in an
account at the beginning of each month at an annual interest
rate of 3% compounded monthly. The balance in the account
after months is 

(a) Compute the first six terms of the sequence 

(b) Find the balance in the account after 5 years by computing
the 60th term of the sequence.

(c) Find the balance in the account after 20 years by 
computing the 240th term of the sequence.

73. Government Expenditures A government program
that currently costs taxpayers $4.5 billion per year is cut back
by 20 percent per year.

(a) Write an expression for the amount budgeted for this
program after years.

(b) Compute the budgets for the first 4 years.

(c) Determine the convergence or divergence of the sequence
of reduced budgets. If the sequence converges, find its limit.

74. Inflation When the rate of inflation is per year and the
average price of a car is currently $25,000, the average price
after years is Compute the average
prices for the next 5 years.

75. Using a Sequence Compute the first six terms of the
sequence If the sequence converges, find its limit.

76. Using a Sequence Compute the first six terms of the
sequence

If the sequence converges, find its limit.

�an� � ��1 �
1
n	

n�.

�an� � � n�n�.

Pn � $25,000�1.045�n.n

41
2%

n

�An�.

An � 100�401��1.0025n � 1�.n
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�an�.an 
 1.

�an�

�an�2 
 an 
 4.
�an�

an � 2 �
1
5nan �

1
3 �1 �

1
3n	

an � 5 �
2
n

an � 7 �
1
n

n

an �
cos n

n
an � sin 

n�

6

an � �3
2	

n

an � �2
3	

n

an � ��2
3	

n

an � ne�n
2

an �
3n

n � 2
an � 4 �

1
n

n

WRITING ABOUT CONCEPTS
69. Sequence Is it possible for a sequence to converge to

two different numbers? If so, give an example. If not,
explain why not.

70. Defining Terms In your own words, define each of the
following.

(a) Sequence (b) Convergence of a sequence

(c) Monotonic sequence (d) Bounded sequence

71. Writing a Sequence Give an example of a sequence 
satisfying the condition or explain why no such sequence
exists. (Examples are not unique.)

(a) A monotonically increasing sequence that converges 
to 10

(b) A monotonically increasing bounded sequence that does
not converge

(c) A sequence that converges to 

(d) An unbounded sequence that converges to 100

3
4

72. HOW DO YOU SEE IT? The graphs of two
sequences are shown in the figures. Which graph
represents the sequence with alternating signs?
Explain.

n
2 4 6

2

−2

1

−1

an

n
2 6

2

−2

1

−1

an

Consider the sequence
whose th term is

given by

where is the principal,
is the account balance

after months, and is 
the interest rate compounded 
annually.

(a) Is a convergent sequence? Explain.

(b) Find the first 10 terms of the sequence when 
and r � 0.055.P � $10,000

�An�

rn
An

P

An � P�1 �
r

12	
n

n�An�

67. Compound Interest

Lisa S./Shutterstock.com
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594 Chapter 9 Infinite Series

77. Proof Prove that if converges to and then
there exists a number such that for 

78. Modeling Data The amounts of the federal debt (in
trillions of dollars) of the United States from 2000 through
2011 are given below as ordered pairs of the form 
where represents the year, with corresponding to
2000. (Source: U.S. Office of Management and Budget)

(a) Use the regression capabilities of a graphing utility to find
a model of the form

for the data. Use the graphing utility to plot the points and
graph the model.

(b) Use the model to predict the amount of the federal debt in
the year 2020.

True or False? In Exercises 79–82, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

79. If converges to 3 and converges to 2, then 
converges to 5.

80. If converges, then 

81. If converges, then converges to 0.

82. If diverges and diverges, then diverges.

83. Fibonacci Sequence In a study of the progeny of rabbits,
Fibonacci (ca. 1170–ca. 1240) encountered the sequence now
bearing his name. The sequence is defined recursively as

where and 

(a) Write the first 12 terms of the sequence.

(b) Write the first 10 terms of the sequence defined by

(c) Using the definition in part (b), show that

(d) The golden ratio can be defined by Show
that

and solve this equation for 

84. Using a Theorem Show that the converse of Theorem 9.1
is not true. Hint: Find a function such that 
converges, but does not exist.

85. Using a Sequence Consider the sequence

(a) Compute the first five terms of this sequence.

(b) Write a recursion formula for for 

(c) Find 

86. Using a Sequence Consider the sequence where
and 

(a) Show that is increasing and bounded.

(b) Prove that exists.

(c) Find 

87. Squeeze Theorem

(a) Show that for 

(b) Draw a graph similar to the one above that shows

(c) Use the results of parts (a) and (b) to show that

for 

(d) Use the Squeeze Theorem for Sequences and the result of
part (c) to show that 

(e) Test the result of part (d) for and 100.

88. Proof Prove, using the definition of the limit of a sequence,
that

89. Proof Prove, using the definition of the limit of a sequence,
that for 

90. Using a Sequence Find a divergent sequence such
that converges.

91. Proof Prove Theorem 9.5 for a nonincreasing sequence.
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an
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�an � bn}�bn��an�
�an 
n��an�
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 �an � an�1� � 0.�an�
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n � 0, 1, .  .  . , 11an � bn2 � cn � d,

�11, 14.8��10, 13.5�,�9, 11.9�,�8, 10.0�,�7, 9.0�,
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PUTNAM EXAM CHALLENGE
92. Let be a sequence of nonzero real numbers

such that for Prove
there exists a real number such that 
for all 

93. Let and for 

The first few terms are

2, 3, 6, 14, 40, 152, 784, 5168, 40,576

Find, with proof, a formula for of the form 
where and are well-known sequences.

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved..

�Bn��An�
Tn � An� Bn,Tn

Tn � �n � 4�Tn�1 � 4nTn�2 � �4n � 8�Tn�3.

n 	 3,T2 � 6,T1 � 3,T0 � 2,

n 	 1.
xn�1 � axn � xn�1a

n � 1, 2, 3, .  .  . .x 2
n � xn�1 xn�1 � 1
n 	 0,�xn�,
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